Contributed by Shishir K Gupta, Dept. Bioinformatik, Uni Wuerzburg in October 2013. "I initially used scipio for training set. The protein set I choosed for scipio, was the proteins collected from the different GO subclasses. Then I used scipio + 107 highly conserved proteins in 7 sequenced ants. This parameters were best for me. Then also used Pasa and Cegma sets but it could not improve much more accuracy. I also generated hints from different sources (assembled RNAseq, raw RNASeq, EST and repeatmasker) and did the final predictions. My training set had 330 genes and test set had 100 genes." ******* Evaluation of gene prediction ******* ---------------------------------------------\ | sensitivity | specificity | ---------------------------------------------| nucleotide level | 0.953 | 0.906 | ---------------------------------------------/ ----------------------------------------------------------------------------------------------------------\ | #pred | #anno | | FP = false pos. | FN = false neg. | | | | total/ | total/ | TP |--------------------|--------------------| sensitivity | specificity | | unique | unique | | part | ovlp | wrng | part | ovlp | wrng | | | ----------------------------------------------------------------------------------------------------------| | | | | 143 | 123 | | | exon level | 702 | 682 | 559 | ------------------ | ------------------ | 0.82 | 0.796 | | 702 | 682 | | 58 | 2 | 83 | 59 | 2 | 62 | | | ----------------------------------------------------------------------------------------------------------/ ----------------------------------------------------------------------------\ transcript | #pred | #anno | TP | FP | FN | sensitivity | specificity | ----------------------------------------------------------------------------| gene level | 128 | 100 | 42 | 86 | 58 | 0.42 | 0.328 | ----------------------------------------------------------------------------/